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1 Basics

1.1 Variance

Variance is the expectation of the squared deviation of a random variable from
its mean.

V ar(X) = E[(X − X̄)2] (1)

Rearranging (1) we find that variance equals the expectation of the square
minus the square of the expectation.

V ar(X) = E[X2]− E[X]2 (2)

Variance is invariant to adding a constant:

V ar(X + a) = V ar(X) (3)

If all values are scaled by a constant, the variance is scaled by the square of
that constant:

V ar(aX) = a2V ar(X) (4)

The variance of two random variables can be added:

V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X,Y )

V ar(aX − bY ) = a2V ar(X) + b2V ar(Y )− 2abCov(X,Y )

(5)

(6)

Notice how this makes diversification possible. If we have two uncorrelated
assets with V ar(X) = V ar(Y ) = 1, then holding a 50/50 portfolio has variance
0.52 + 0.52 = 0.5, we halved the risk! But if the assets are perfectly correlated
so that Cov(X,Y ) = 1 then the portfolio variance is 0.52 + 0.52 + 2 ∗ 0.52 = 1
so we have not won anything by diversification.
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1.2 Covariance

Covariance is a measure of the joint variability of two random variables. Notice
the similarity between variance and covariance, both are the expectation of the
multiple minus the multiple of the expectation:

Cov(X,Y ) = E(X − X̄)E(Y − Ȳ ) (7)

Rearranged:

Cov(X,Y ) = E(XY )− E(X)E(Y ) (8)

Correlation is just a scaled version of the covariance to achieve comparability:

Corr(X,Y ) =
Cov(X,Y )√
V ar(X)V ar(Y )

(9)

So that Corr(X,Y ) ∈ [0, 1]
If X is a multivariate matrix (e.g. prices of multiple assets in one matrix)

then Cov(X) is the covariance matrix of all rows in the vector.

Σ = Cov(X) (10)

Question: Two variables have zero correlation, are they unrelated?
Answer : At least they are not linearly related, but there might still be some

non linear relation.
Question: Assume we have a portfolio of stocks with returns X ∼ N(0,Σ)

and a weight matrix B so that our returns are BX. What is the new covariance
of our portfolio?

Answer : This is an important result that you can derive from the variance
scaling property.

Cov(BX) = BCov(X)B′ = BΣB′ (11)

Note how only the matrix notation is different, but basically the variance scales
B2 as in (4).

1.3 Conditional Variance

If Y is an asset return and X is a trading signal and they are both normally
distributed have a correlation of ρ, then the conditional expectation and variance
is:

E(Y |X) = ρX

V ar(Y |X) = 1− ρ2
(12)

(13)
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1.4 Statistical tests

Statistical tests test if a null hypothesis H0 can be rejected in favor of an al-
ternative hypothesis H1. Type I error means falsely rejecting the null while
Type II error means not rejecting the null hypothesis when it should have
been. The size (sometimes written as α) of a statistical test is the probability
of making a type I error. A p-value is the probability of observing the data
given that the null is correct. The size is thus the p-value we require to reject
the null (the test is significant at α level). The power of a statistical test is the
inverse of probability of making a type II error. That is, the probability that
the study will detect an effect if there is one. While size can be set freely, power
is dependent on factors such as the effect size and sample size.

2 Maximum Likelihood Estimation (MLE)

Key idea: Given a known density function f with parameters θ, choose θ to
maximize the density of the data Y |X under f . The likehood of θ is thus the
density of f at point Y |X which is the product of the density of the individual
samples.

2.1 Linear Regression MLE

Assuming a normal error distribution, the likehood equals:

Y |X = x ∼iid N(x′β, σ2)

L(θ, y) = fY |X=x(y; θ) =

n∏
i=1

fYi|Xi=xi
(y; θi)

(14)

(15)

Because the product leads to tiny values for L we maximize the log likehood:

θ̂ = argmax
θ

logL(θ, y) (16)

2.2 Properties of MLE

1. In some cases no MLE exists. The optimizer will find no point where
d logL(θ,y)

dθ ) = 0 for all θ.

2. The θ̂ value found by (16) does not have to be unique, there might be
local optima.

3. If the model f is correct, MLE will converge on the correct parameters as
sample size goes to infinity.

4. The distribution around the true parameter θ0 is
√
n(θ̂− θ0)

d−→ N(0, I−1)
where I is the information, aka the covariance in likelihood gradient be-
tween parameters when θ̂ = θ0.
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5. Information Equality: If the model is correct, the likehood is fully
differentiable and the support of Y does not depend on θ:

I = Cov(
d logL(θ, y)

dθ
)|θ=θ0

= −E(
d2 logL(θ, y)

dθd′θ
)

(17)

(18)

6. Cramér-Rao Inequality: Establishes a lower bound on the variance
of an MLE estimator. Under the same assumptions as before, for large
sample sizes n and an unbiased estimator θ̃, Cov(θ̃) − I−1 ≥ 0 (this is
closely related to 4)

Question: What is maximum likelihood estimation, does it always exist
and is it unique?

Answer : MLE is a method that maximizes the likehood of a parameterized
density function. There might not always be an MLE solution and it might not
always be unique because of local optima etc.

2.3 Common MLE’s You Can Compute by Hand

1. Normal Distribution: µ = X̄ and σ2 = 1/N
∑N
i=1(Xi − X̄)2

2. Poisson Distribution: λ = X̄

3. Bernoulli Distribution: p = X̄

4. Exponential Distribution: λ = 1/X̄

3 The OLS Estimator

3.1 Basic Setup

Linear regression has two functions: Estimation and hypothesis testing. In
systematic trading, the hypothesis testing is especially important.

ŷ = α+ β1x1 + ...+ βnxn
Simplify−−−−−−→ ŷ = βX (19)

When we say linear regression, we pretty much always mean ordinary least
squares (OLS) linear regression that solves:

argmin
β

(y − βX)2 (20)

If only X or y is scaled, β changes, too, but the p-values stay the same
because the standard error also scales.
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3.2 Assumptions

1. The relationship is actually linear. Linear regression might not find e.g.
y = X2

2. X is fixed (little to no measurement error)

3. Constant variance (a.k.a. homoscedasticity), econonometrics has devel-
oped a large number of tools to deal with heterocedasticity.

4. Independence of errors: In finance, errors can be autocorrelated and again,
there is a toolbox to deal with that.

5. Lack of perfect multicollinearity. If features are perfectly correlated, OLS
will actually not compute. If they are somewhat correlated, the estimate
will have significantly higher variance.

3.3 β and V ar(β)

You can think of the the OLS solution as β̂ = X ∗ y/(X2), or formally:

β̂ = (X ′X)−1X ′y (21)

The residual ε of a linear regression is a vector and equals ε = (y − ŷ). In
linear regression E[ε] = 0

V ar(β̂) = (X ′X)−1V ar(ε) (22)

Having β̂ and V ar(β̂) we then usually conduct a t-test (where the degrees
of freedom equal sample size - 1) in which H0 : β = 0. If we find the β to be
significant non zero, the feature is indeed predictive.

3.4 The Gauss Markov Theorem

OLS linear regression is the minimum variance unbiased estimator.
This is intuitive because a) OLS does not bias parameters (it has no priors,
penalties, etc.) and b) OLS minimizes the error variance. However, there are
good reasons to bias an estimator (e.g. regularization) and there are lots of
non-linear relationships where OLS will fall short.

4 Heteroscedasticity

Heteroscedasticity means that the variance is not constant and usually depen-
dent on some variable so that e.g. y = α + βx + εx. Since ε is important to
estimate V ar(β) ,see (22). Heteroscedasticity influences the variance estimates
of the coefficients and can lead to faulty hypothesis tests. Intuitively, we
tackle covariance by multiplying errors with the square of X and di-
viding by the square of X, this removes the effect of X, technically we
multiply with X ′X and (X ′X)−1, but the intuition holds.
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4.1 White Test for Heteroscedasticity

If ε is dependent on X in some way, we can test for heteroscedasticity with an
auxiliary regression on the squared error:

ε̂2i = δ0 + δ1xi + δ2x
2
i + ηi (23)

Where H0 : δj = 0,∀j > 0. In practice we test the hypothesis with an R2

and χ2 test.

4.2 White’s covariance estimator

To estimate the error covariance robustly, we effectively have to apply our in-
tuition and ”multiply and divide by the square of X”. Whites estimator is:

Σ̂−1XX ŜΣ̂−1XX = n(X ′X)−1(X ′ÊX)(X ′X)−1 (24)

Where Ê is a matrix with the errors ε on its diagonal. Using the het-
eroscedastic robust covariance estimator where it is not needed (ho-
moscedastic data) leads to worse small sample properties. It e.g.
distorts the test size so that a 5% test can reject the null 10% of the
time even if it is true.

5 Stationary Time Series

A process {yt} is strictly stationary if the joint distribution of {yt, yt+1, ..., yt+h}
only depends only on h and not on t.

5.1 Covariance stationary

A process is covariance stationary if

E[yt] = µ for t = 1, 2, ...

V [yt] = σ2 <∞ for t = 1, 2, ...

E[(yt − µ)(yt−s − µ)] = γs for t = 1, 2, ..., s = 1, 2, ..., t− 1

(25)

(26)

(27)

Notice how covariance stationarity implies three types of stationarity, mean
stationarity, (25), variance stationarity (26) and autocovariance station-
arity (27). A white noise process is a covariance stationary process in which
the autocovariance is zero.

5.2 Mean Stationarity

A process that is mean stationary must be mean reverting, speak if it diverges
from the mean it sooner or later comes back to it. Common causes for a process
not to be mean stationary are unit roots or linear trends. Trends can be
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checked by regressing the time series against the time t. Unit roots can be
checked e.g. with the Dickey Fuller test.

6 Autoregressive Models

6.1 AR(1)

An autoregressive model is simply an OLS model of a time series variable.

Xt = φ0 + φ1Xt−1 + ε, ε ∼ iid(0, σ2) (28)

Assuming stationarity, it’s moments are not time dependent.

E(X) = φ0 + φ1E(X) + E(ε) =
φ0

1− φ1
(29)

V ar(X) = E(X2
t − E(X)2) =

σ2

1− φ21
(30)

Cov(Xt, Xt−j) =
φj1

1− φ21
σ2 (31)

6.2 Stationarity

The AR(p) process is stable if the roots of the lag polynomial lie
outside the unit circle, for an AR(1) that means |φ1| < 1. The general proof
of condition for all AR models works by transforming the AR(q). For an AR(2),
this means that φ1 + φ2 < 1, φ1 − φ2 < 1 and |φ2| < 1.

6.3 Forecasting

Forecasts can be computed recursively.

Et[yt+h] = φ0 + φ1E[yt+h−1] (32)

Long run forecasts are computed with a sum:

Et[yt+h] =

h−1∑
i=0

φi1φ0 + φh1yt (33)

The forecast variance is driven only by ε, so V art(Xt+1) = V ar(εt+1) = σ2
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7 Volatility Modeling

7.1 Realized variance

Realized variance RV is a simple measure of the variance of a security return
that day. Given n intraday return, the realized variance equals.

RV =

n∑
i

r2i (34)

Note that this approach assumes that intraday returns have a mean of
zero. In general, daily returns are assumed to be mean zero as well. The daily
variance given a daily return is thus σ2 = r2

7.2 ARCH

Arch models are by and large simple autoregressive models:

rt = εt

εt = σtet

σ2
t = ω + α1ε

2
t−1

et ∼ N(0, 1)

(35)

(36)

(37)

(38)

Returns are mean zero and a random process (35), the random process consists
of the volatility and some random term (36). The volatility is dependent on
some long run level ω and the past ε2t−1, (37). We can estimate how it depends
on past returns by estimating the best fitting α1 value. ARCH models can
have a non-zero mean return as well which is then fit with an AR
process, but that is less interesting, so we will omit it here.

1. Conditional and unconditional mean of εt is always zero

2. The conditional variance is σ2
t

3. The unconditional variance is ω/(1− α1)

4. The jth autocovariance is αj1V [ε2t ]

5. The jth autocorrelation is αj1

7.3 GARCH

GARCH just adds a lagged variance term to an ARCH model

rt = εt

εt = σtet

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1

et ∼ N(0, 1)

(39)

(40)

(41)

(42)
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The unconditional variance is now ω/(1 − α1 − β1), other than that most
things stay the same.

7.4 The big happy ARCH family

In principle there is nothing stopping us from making volatility dependent on
more terms. A few notable examples are listed below:

1. GJR-GARCH adds γ1ε
2
t−1I[εt−1<0 to capture the fact that negative shocks

have a larger impact on volatility.

2. TARCH works like GJR-GARCH but regresses on absolute instead of
square values.

3. EGARCH regresses log volatility

Equally, you could use alternative error distributions, fat tails, asymmetric
distributions, ...

7.5 Value at Risk

V aR(α) expresses ”On α% of days we expect to loose more than V aR(α)”.
Conditional VaR makes the VaR conditional on the recent past: ”Given that
the last week was like X, we expect the VaR to be Y”. Unconditional VaR
computes the VaR using a much longer time horizon and is not concerned with
the recent past.

1. 1996 RiskMetrics: Uses an exponentially weighted moving average to
compute volatility:

σ2
t+1 = (1− λ)r2t + λσ2

t (43)

Notice how this is the same as a GARCH model in which α = (1−λ) and
β = λ, see (41). It then assumes returns are normally distributed and
computes the VaR as the α quantile of a normal distribution with mean
zero and standard deviation σ

V aRt+1 = −σt+1Φ−1(α) (44)

2. 2006 RiskMetrics: Adds long memory, Student distribution, residuals
scale correction, lagged correlations. It is a more complicated model but
generally yields better results.

3. Historical Simulation: Uses an empirical distribution, by sampling
returns over some lookback window, sorting them, and then finding the α
quantile of that distribution.

4. Weighted Historical Simulation: Again, an empirical distribution is
constructed, but returns are exponentially weighted so that older returns
contribute less. To achieve this, we can not just sort the returns and take
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the quantile but have to compute the density function as the weighted
average number of points below a support point:

Ĝt(r) =

t∑
i=1

wiI[r<ri] (45)

5. Filtered Historical Simulation: Computes an empirical distribution
of devarianced shocks. It first computes the daily volatility σ̂t using an
ARCH model. It then devariances returns êt = ε̂t/σ̂t. All êt values are
then sorted, the α quantile is computed and scaled by the ARCH predicted
σ̂t+1

6. CaViaR: directly forecasts the quantile rather than parameters of the
distribution. Its inputs are the previous quantile value qt as well as HITt
which indicates if there was a VaR exceedance.

qt+1 = ω + γHITt + βqt (46)

8 Vector Autoregression

VAR models enable to model multiple time series together which can improve
forecasting and and analysis of the system.

8.1 Basic Properties

A VAR is really just an AR with matrices, intuitively it is easier to remember
the AR properties.

yt = Φ0 + Φ1yt−1 + εt (47)

AR VAR
Mean φ0/(1− φ1) (I − Φ1)−1Φ0

Variance σ2/(1− φ21) (I − Φ1 ⊗ Φ1)−1vec(Σ)
sth Autocovariance γsφ

s
1V [yt] Φs1V [yt]

Table 1: AR(1) and VAR(1) properties

VAR(1) is stationary if |λi| < 1 where λi are eigenvalues of Φ1 (48)

8.2 Granger Causality

A variable x does NOT granger cause y if the forecast of y does not
change when conditioned on x: E[yt|xt−1, yt−1, ...] = E[yt|yt−1, ...]. We
test this via a restricted VAR, where we force the variable mapping x to y to be
zero. We can then compare the restricted and unrestricted var for performance.
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8.3 Impulse response function

Plots the response of y if x (or y itself) experiences a unit shock of one standard
deviation. Makes interpretation of VAR easier.

8.4 Cointegration

Cointegration is the VAR version of unit roots. xt and yt are cointegrated
if both are unit roots and there exists a vector β with both elements
non-zero so that β1xt − β2yt ∼ I(0). We can find cointegration through
eigenvalues of Φ1. If only one eigenvalue is 1, they are cointegrated. If both are
1, they are two independent unit roots.

The Engle-Granger test tests for cointegration constructs an OLS esti-
mate yt = α+ βxt + εt and then performs and Adjusted Dickey fuller test for a
unit root in ε

8.5 Error correction models

If two variables xt, yt are cointegrated, then an error correction model forecasts
∆xt and Deltayt dependent on xt−1 and yt−1. Analogy: A drunk person with
dog on a leash walk through a park. They both move randomly but always find
back to another. An error correction model captures how.

If δyt = πyt−1 + εt then we can decompose π into π = αβ′ where α measures
the speed of convergence and β contain the cointegrating vectors.
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